Skip to content Skip to sidebar Skip to footer

Show Extension on Boundary of Topological Space is Continuous

Abstract

We present different constructions of abstract boundaries for bounded complete (Kobayashi) hyperbolic domains in ℂ d , d ≥ 1. These constructions essentially come from the geometric theory of metric spaces. We also present, as an application, some extension results concerning biholomorphic maps.

References

  1. M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds, Research and Lecture Notes in Mathematics, Complex Analysis and Geometry, Mediterranean Press (Rende, 1989).

    MATH  Google Scholar

  2. L. Arosio, M. Fiacchi, S. Gontard and L. Guerini, The horofunction boundary of a Gromov hyperbolic space, arXiv:2012.09848 (2020).

    Google Scholar

  3. Z. M. Balogh and M. Bonk, Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv., 75 (2000), 504–533.

    Article  MathSciNet  Google Scholar

  4. F. Berteloot, Méthodes de changement d'échelles en analyse complexe, Ann. Fac. Sci. Toulouse Math. (6), 15 (2006), 427–483.

    MathSciNet  MATH  Google Scholar

  5. G. Bharali and A. Maitra, A weak notion of visibility, a family of examples, and Wolff-Denjoy theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 22 (2021), 195–240.

    MathSciNet  MATH  Google Scholar

  6. G. Bharali and A. Zimmer, Goldilocks domains, a weak notion of visibility, and applications, Adv. Math., 310 (2017), 377–425.

    Article  MathSciNet  Google Scholar

  7. F. Bracci, M. D. Contreras and S. Diaz-Madrigal, Continuos Semigroups of Holomorphic Self-maps of the Unit Disc, Springer Monographs in Mathematics, Springer Nature Switzerland AG (2020).

    Book  Google Scholar

  8. F. Bracci and J. E. Fornæss, The range of holomorphic maps at boundary points, Math. Ann., 359 (2014), 909–927.

    Article  MathSciNet  Google Scholar

  9. F. Bracci and H. Gaussier, Horosphere topology, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 20 (2020), 239–289.

    MathSciNet  MATH  Google Scholar

  10. F. Bracci, H. Guassier, N. Nikolov and P. J. Thomas, Local and global visibility and Gromov hyperbolicity of domains with respect to the Kobayashi distance, arXiv:2201.03070 (2022).

    Google Scholar

  11. F. Bracci, H. Gaussier and A. Zimmer, Homeomorphic extension of quasi-isometries for convex domains in ℂd and iteration theory, Math. Ann., 379 (2021), 691–718.

    Article  MathSciNet  Google Scholar

  12. F. Bracci, H. Gaussier and A. Zimmer, The geometry of domains with negatively pinched Kähler metrics, J. Differential Geom. (to appear), arXiv:1810.11389.

  13. F. Bracci, N. Nikolov and P. J. Thomas, Visibility of Kobayashi geodesics in convex domains and related properties, Math. Z., 301 (2022), 2011–2035.

    Article  MathSciNet  Google Scholar

  14. M. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, Springer (Berlin, 1999).

    Book  Google Scholar

  15. L. Capogna and E. Le Donne, Conformal equivalence of visual metrics in pseudoconvex domains, Math. Ann., 379 (2021), 743–763.

    Article  MathSciNet  Google Scholar

  16. D. D'Addezio, Gromov hyperbolicity in several complex variables. Master Thesis, Università di Roma "Tor Vergata" (2019).

    Google Scholar

  17. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26 (1974), 1–65.

    Article  MathSciNet  Google Scholar

  18. M. Fiacchi, Gromov hyperbolicity of pseudoconvex finite type domains in ℂ2, Math. Ann., 382 (2022), 37–68.

    Article  MathSciNet  Google Scholar

  19. J.E. Fornæss and F. Rong, Estimate of the squeezing function for a class of bounded domains, Math. Ann., 371 (2018), 1087–1094.

    Article  MathSciNet  Google Scholar

  20. F. Forstnerič and J.-P. Rosay, Localization ot the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann., 279 (1987), 239–252.

    Article  MathSciNet  Google Scholar

  21. F. Forstnerič, Mappings of strongly pseudoconvex Cauchy-Riemann manifolds, in: Several Complex Variables and Complex Geometry (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, Part 1, Amer. Math. Soc. (Providence, RI, 1991), pp. 59–92.

    Chapter  Google Scholar

  22. F. Forstnerič, Proper holomorphic mappings: a survey, in: Several Complex Variables (Stockholm, 1987/1988), Math. Notes, vol. 38, Princeton Univ. Press (Princeton, NJ, 1993), pp. 297–363.

    Google Scholar

  23. H. Herbort, An example of a pseudoconvex domain whose holomorphic sectional curvature of the Bergman metric is unbounded, Ann. Polon. Math., 92 (2007), 29–39.

    Article  MathSciNet  Google Scholar

  24. A. Karlsson, On the dynamics of isometries, Geom. Topol., 9 (2005), 2359–2394.

    Article  MathSciNet  Google Scholar

  25. L. Lempert, La metrique de Kobayashi et la representation des domaines sur lá boule, Bull. Soc. Math. France, 109 (1981), 427–474.

    Article  MathSciNet  Google Scholar

  26. L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math., 8 (1982), 257–261.

    Article  MathSciNet  Google Scholar

  27. L. Lempert, Intrinsic distances and holomorphic retracts, in: Complex Analysis and Applications'81 (Varna, 1981), Publ. House Bulgar. Acad. Sci. (Sofia, 1984), pp. 341–364.

    Google Scholar

  28. L. Lempert, A precise result on the boundary regularity of biholomorphic mappings, Math. Z., 193 (1986), 559–579.

    Article  MathSciNet  Google Scholar

  29. L. Lempert, On the boundary behavior of holomorphic mappings, in: Contributions to Several Complex Variables in honor of Wilhelm Stoll, A. Howard and P. M. Wong, eds., Friedr. Vieweg and Sons (Braunschweig, 1986), 193–215.

    Chapter  Google Scholar

  30. S. Pinchuk, The scaling method and holomorphic mappings, Several Complex Variables and Complex Geometry (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, Part 1, Amer. Math. Soc. (Providence, RI, 1991), pp. 151–161.

    Chapter  Google Scholar

  31. S. Pinchuk, R. Shafikov and A. Sukhov, Some aspects of holomorphic mappings: a survey, Tr. Mat. Inst. Steklova, 298 (2017), Kompleksnyĭ Analiz i ego Prilozheniya, 227–266 (in Russian); translated in Proc. Steklov Inst. Math., 298 (2017), 212–247.

  32. D. Wu and S. T. Yau, Invariant metrics on negatively pinched complete Kähler manifolds, J. Amer. Math. Soc., 33 (2020), 103–133.

    Article  MathSciNet  Google Scholar

  33. S. K. Yeung, Geometry of domains with the uniform squeezing property. Adv. Math., 221 (2009), 547–569.

    Article  MathSciNet  Google Scholar

  34. A. M. Zimmer, Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type, Math. Ann., 365 (2016), 1425–1498.

    Article  MathSciNet  Google Scholar

  35. A. M. Zimmer, Gromov hyperbolicity, the Kobayashi metric, and ℂ-convex sets, Trans. Amer. Math. Soc., 369 (2017), 8437–8456.

    Article  MathSciNet  Google Scholar

  36. A.M. Zimmer, Characterizing domains by the limit set of their automorphism group, Adv. Math., 308 (2017), 438–482.

    Article  MathSciNet  Google Scholar

Download references

Author information

Authors and Affiliations

Corresponding author

Correspondence to F. Bracci.

Additional information

To Professor László Lempert for his 70th birthday

Partially supported by PRIN 2017 Real and Complex Manifolds: Topology, Geometry and holomorphic dynamics, Ref: 2017JZ2SW5, by GNSAGA of INdAM and by the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

Partially supported by ERC ALKAGE.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bracci, F., Gaussier, H. Abstract Boundaries and Continuous Extension of Biholomorphisms. Anal Math 48, 393–409 (2022). https://doi.org/10.1007/s10476-022-0163-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1007/s10476-022-0163-5

Key words and phrases

  • Gromov hyperbolic space
  • biholomorphism
  • boundary extension

Mathematics Subject Classification

  • 32E35

hoffmancontery.blogspot.com

Source: https://link.springer.com/article/10.1007/s10476-022-0163-5

Post a Comment for "Show Extension on Boundary of Topological Space is Continuous"